
Gist - Optimizing Segmentation for Decentralized
Federated Learning on Tiny Devices

Navidreza Asadi∗
Technical University Munich

Munich, Germany

Halil Ibrahim Bengü∗
Technical University of Munich

Munich, Germany

Lars Wulfert∗
Fraunhofer IMS

Duisburg, Germany

Hendrik Wöhrle
University of Duisburg-Essen

Duisburg, Germany

Wolfgang Kellerer
Technical University Munich

Munich, Germany

Abstract

We introduce Gist, a decentralized federated learning frame-
work for tiny microcontrollers. Rather than considering all
model parameters as equally important, we let devices get
the “gist” of the updates. Our contribution has three pillars:
(1) it segments model parameters by their importance, identi-
fying the most impactful updates; (2) it shares the segments
probabilistically, ensuring rapid propagation of important
knowledge while maintaining model diversity; and (3) it ag-
gregates updates using a success-based scheme, giving more
weight to information from better-performing peers. We im-
plement and validate Gist through various simulation exper-
iments, realistic large-scale emulation, and deployment on a
physical cluster of ESP32-S3 microcontrollers. Across three
models and two tasks, Gist outperforms existing baselines,
achieving higher accuracy and faster convergence, especially
in larger networks consisting of hundreds of devices.
ACM Reference Format:

NavidrezaAsadi, Halil IbrahimBengü, LarsWulfert, HendrikWöhrle,
and Wolfgang Kellerer. 2025. Gist - Optimizing Segmentation for
Decentralized Federated Learning on Tiny Devices. In Federated
Learning and Edge AI for Privacy and Mobility (FLEdge-AI ’25), No-
vember 4–8, 2025, Hong Kong, China. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3737899.3768527

1 Introduction

Internet of Things (IoT) devices, particularlymicrocontrollers,
are often resource-constrainedwith limited processing power,
memory, and connectivity options [1, 2, 10]. Added to this,

∗Equal contribution

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
FLEdge-AI ’25, Hong Kong, China
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1976-9/2025/11
https://doi.org/10.1145/3737899.3768527

the data generated by these devices is often sensitive and pri-
vate, and changes over time. These make it difficult to share
datawith a central server for training, demanding a decentral-
ized approach to learning directly on device. Federated Learn-
ing (FL) enables collaborative machine learning on decen-
tralized data, thereby preserving data privacy [5, 12, 25, 33].
However, the reliance of conventional FL on a central aggre-
gation server introduces single point of failure and limits
scalability. Decentralized FL (DFL) addresses these limita-
tions by direct parameter sharing among devices, making it
particularly suitable for IoT networks. Nevertheless, DFL im-
poses significant computation-communication overhead, a
critical challenge for resource-constrained microcontrollers
that form the backbone of many IoT applications, to the
extent that the vanilla DFL is barely feasible on such devices.
Challenges. Existing approaches to mitigate this overhead,
such as segmented gossip [9] often rely on random segmen-
tation, which is inefficient. While importance-based model
pruning is explored in centralized FL [18, 30], these meth-
ods typically hinder convergence. The application of more
nuanced, importance-driven segmentation in DFL remains
largely unexplored. On-device tasks like partial updates and
model segmentation must be optimized to stay within hard-
ware limits [17]. Additionally, consistent updates without a
central server requires reliable decentralized communication.
Further, data on IoT devices is often non-𝑖 .𝑖 .𝑑 . (independent
and identically distributed) and unbalanced. DFL systems
must be robust to handle data heterogeneity [21].
Approach. To bridge this gap, we propose Gist, a dynamic
segmentation method tailored to microcontroller-based DFL
networks. Our approach integrates three key mechanisms:
parameter importance, probabilistic segment sharing, and
success-based aggregation. Instead of treating all model pa-
rameters equally, our method prioritizes segments contain-
ing more impactful updates. These prioritized segments are
then shared more frequently through a probabilistic mecha-
nism, ensuring a balance between exploiting important up-
dates and exploring the wider parameter space. Furthermore,
our success-based aggregation scheme weights incoming

https://doi.org/10.1145/3737899.3768527
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3737899.3768527

FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China Asadi et al.

model updates based on the sender’s performance, enhanc-
ing the quality of the aggregated model.
Contribution. Our key contributions are:
⊲ A novel dynamic segmentation method for DFL that prior-
itizes model updates based on parameter magnitude.
⊲ A probabilistic sharing mechanism that balances exchange
of important segments with model diversity.
⊲ A success-based aggregation strategy that weights updates
by the sender’s performance.
⊲ Implementation and evaluation across simulation, emula-
tion, and physical hardware on three models and two tasks,
demonstrating its effectiveness and practicality in resource-
constrained environments.

2 Related Work

Two main mitigation strategies have gained prominence for
DFL in IoT: model segmentation to reduce transmission size
and gossip-based communication for efficient information
propagation. We examine prior work in these areas, focusing
specifically on approaches suitable for resource-constrained
IoT environments where our proposed system operates.
Gossip Communication. Gossip learning is a decentral-
ized approach where devices exchange model parameters
with random peers to gradually propagate updates across the
network, mitigating the communication overhead of broad-
casting to all nodes. However, without a central server, the
dynamic nature of DFL networks makes neighbor selection
challenging [20, 34]. Several approaches try to address this.
[28] proposes a method with a predefined communication
structure where nodes exchange beliefs about model parame-
ters only with their immediate neighbors. GossipFL [27] uses
a semi-decentralized model with a coordinator that gener-
ates a gossip matrix to guide peer-to-peer model exchanges,
optimizing bandwidth. CHOCO-GOSSIP [11] reduces com-
munication by allowing nodes to exchange compressed or
quantized updates [3], which is advantageous in large-scale,
resource-constrained environments.
Segmentation Strategies. Model segmentation divides the
global model into smaller parts to reduce communication
and computational load.While some centralized FL methods
use structured or sketched (compressed) updates [13], DFL re-
quires peer-to-peer aggregation of segments. One approach,
FIARSE [30], dynamically creates submodels by selecting
parameters with the highest magnitude, assuming they are
the most important [22]. This risks omitting learned features
from local data. Combo [9] proposes a segmented gossip pro-
tocol where the model is divided into equal, non-overlapping
segments. Nodes pull different segments from various peers
to reconstruct a full model replica. This reduces commu-
nication overhead but introduces synchronization delays,
making it less practical for real-world applications. Other

methods focus on partial updates. For instance, [29] pro-
poses exchanging partitioned gradient updates. To improve
convergence, AdaStair and AdaLoss [31] introduce adap-
tive learning rate adjustments based on training rounds or
model loss, respectively. However, these methods often rely
on static segmentation or heuristics that may not adapt well
to the dynamic nature of data and model updates in DFL.
Static partitioning can be inefficient, while magnitude-based
selection risks discarding crucial weight updates. A key chal-
lenge remains in dynamically identifying and prioritizing the
most impactful segments for exchange to maximize learning
efficiency while minimizing communication overhead.

Our proposed method addresses this gap by introducing a
probabilistic, importance-aware segmentation strategy that
adapts to model dynamics, advocating for the most relevant
information to be efficiently propagated through the net-
work. Table 1 compares prior art in DFL with our proposed
method. It highlights the unique features of our approach,
such as serverless operations1, gossip communication, partial
updates, asynchronous aggregation, selective segmentation,
and probabilistic sharing.

3 Gist Design

Our proposed method specifically addresses the challenge of
selective parameter sharing by prioritizing more impactful
model parameters during communication and weighting
aggregation based on sender accuracy, ultimately improving
convergence performance compared to traditional random
segmentation approaches.

3.1 Segmentation & Aggregation: A Primer

Following local training on each device, the model param-
eters are partitioned into sparse segments. These segments
are then exchanged among devices and aggregated to pro-
gressively build an aggregated model. A segment is a sparse
selection of parameters from different layers of a model. Our

Table 1: Comparison of FL Solutions

Methods Server-less
Gossip
Comm.

Partial
Update

Async
Agg.

Selective
Segment.

Prob.
Sharing

FedAvg [21] ✗ ✗ ✗ ✗ ✗ ✗

GossipFL [27] ✗ ✓ ✗ ✗ ✗ ✗

FedLAMA [16] ✗ ✗ ✓ ✓ ✓ ✗

FIARSE [30] ✗ ✗ ✓ ✗ ✓ ✗

P2P [28] ✓ ✗ ✗ ✓ ✗ ✗

CHOCO [11] ✓ ✓ ✗ ✓ ✗ ✗

AKO [29] ✓ ✓ ✓ ✓ ✗ ✗

Combo [9] ✓ ✓ ✓ ✗ ✗ ✗

AdaStair [31] ✓ ✓ ✓ ✓ ✗ ✗

YOGA [18] ✗ ✗ ✓ ✗ ✓ ✗

Gist ✓ ✓ ✓ ✓ ✓ ✓

1Not to be confused with serverless akin to Function as a Service (FaaS).

Gist - Optimizing Segmentation for DFL on Tiny Devices FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China

framework supports two segmentation strategies: random
and importance-based, a key contribution of Gist.
Our aggregation process integrates received parameter

segments with the device’s local model, moving toward
global convergence. The receiver device starts the aggrega-
tion by aligning each received segment to its known position
using the assigned bitmap. Integration is facilitated by a divi-
sion tensor, as illustrated in Fig. 1. This step is executed once
a device accumulates a predefined number of segments.
Let 𝑤𝑡 ∈ R𝑛 denote the local model at round 𝑡 , where 𝑛

is the number of all model parameters. The device receives
𝑁 ∈ N model segments from neighboring devices, each
consisting of a binary bitmap and an associated value vector:

{(b𝑖 , s𝑖)}𝑁𝑖=1 , b𝑖 ∈ {0, 1}𝑛, s𝑖 ∈ R𝑑

Each bitmap b𝑖 indicates which parameters were sent, con-
taining exactly𝑑 =

⌈
𝑛
𝑆

⌉
ones, where 𝑆 ∈ N is the total number

of model segments:

𝑛∑︁
𝑗=1

𝑏𝑖 𝑗 = 𝑑, ∀𝑖 ∈ {1, . . . , 𝑁 } (1)

Let 𝜋𝑖 : {1, . . . , 𝑑} → { 𝑗 ∈ {1, . . . , 𝑛} | 𝑏𝑖 𝑗 = 1} denote
the strictly increasing mapping that returns the index of
the 𝑘-th one in bitmap b𝑖 . The aggregated parameter tensor
r ∈ R𝑛 is computed by assigning the values from s𝑖 to their
corresponding parameter indices in b𝑖 :

𝑟 𝑗 =

𝑁∑︁
𝑖=1

𝑑∑︁
𝑘=1

𝛿 (𝑗 = 𝜋𝑖 (𝑘)) · 𝑠𝑖𝑘 , ∀𝑗 ∈ {1, . . . , 𝑛} (2)

𝛿 (·) denotes the Kronecker delta; only transmitted parame-
ters contribute to the sum. This assigns 𝑠𝑖𝑘 to the position
of the 𝑘-th one in the bitmap 𝑏𝑖 , and is added to the corre-
sponding index 𝑗 = 𝜋𝑖 (𝑘) in the total received tensor. Any
parameters added to a segment are chosen randomly from
the local model. For aggregation normalization, we define
the division tensor 𝜙 ∈ R𝑛 that counts how many times each
parameter index 𝑗 was received:

𝜙 𝑗 =

𝑁∑︁
𝑖=1

𝑏𝑖 𝑗 , ∀𝑗 ∈ {1, . . . , 𝑛} (3)

Finally, themodel update is performed by computing aweighted
average of the accumulated received values and the local
model parameters, normalized by the number of total contri-
butions (including the local one):

𝑤𝑡+1
𝑗 =

𝑟 𝑗 +𝑤𝑡
𝑗

𝜙 𝑗 + 1
, ∀𝑗 ∈ {1, . . . , 𝑛} (4)

Bitmap
Bitmap

Bitmap
Each value is incremented
in division tensor based
on received parameter
location from bitmaps

Segment Parameters
Segment Parameters

Segment Parameters

Received
Segments

Each parameter
value is added to

model replica
Division Tensor Model Replica

Updated Model
Local Model

The replica model's parameters are
calculated using a division tensor
and then added to the local model.

Figure 1: Aggregation on the receiver microcontroller.

3.2 Our Method

We introduce a DFL approach that segments the model based
on parameter importance, prioritizing the propagation of
more impactful parameters. Our method enhances model
accuracy by synergistically combining importance-based
segmentation, probabilistic segment selection, and success-
based aggregation. This offers a fine-grained alternative to
sharing entire model updates and a more dynamic approach
than layer-level parameter ranking. The essential opera-
tions of the proposed method are illustrated in Fig. 2. The
process begins by partitioning parameters into segments
based on importance thresholds, which are derived from
the desired number of segments. During communication, a
probabilistic selection mechanism is employed, giving more
important segments a higher probability of being shared.
This strategy is balanced to ensure that less important seg-
ments are still shared periodically, mitigating model bias.
Following the local training step, model accuracies on a com-
mon test set 𝐷𝑡𝑒𝑠𝑡 are shared alongside the segments. This
enables success-based aggregation, where received segments
are weighted by the accuracy of their source nodes.
Importance-Based Segmentation. In Gist, the parameters
of a local model are partitioned into 𝑆 segments according
to their magnitude, which acts as a proxy for importance.
We start by calculating the percentile of the local model and
creating 𝑆 thresholds 𝜏 ∈ R𝑆 which are later used to divide
the model parameters into 𝑆 segments. First, the absolute
value 𝑤𝑡 of the local model at the round 𝑡 is calculated for
each element 𝑤𝑡

𝑖 = | |𝑤𝑡
𝑖 | |,∀𝑖∈{1, . . . , 𝑛}. Subsequently, the

values are ordered in non-descending order. For 𝑖=1, . . . , 𝑆
we set the target 𝑞𝑖= 100·𝑖

𝑆
and determine

𝑝𝑖 =
𝑞 𝑗

100
(𝑛 − 1), 𝑘𝑖 =

⌊
𝑝𝑖
⌋
+ 1, 𝜎 = 𝑝𝑖 − ⌊𝑝𝑖⌋ .

The threshold 𝜏𝑞𝑖 is obtained by linear interpolation,

𝜏𝑞𝑖 =


𝑤𝑡

(𝑘) , 𝑘𝑖 = 𝑛,

𝑤𝑡
(𝑘) + 𝜎

(
𝑤𝑡

(𝑘+1) −𝑤𝑡
(𝑘)

)
, 1 ≤ 𝑘𝑖 < 𝑛.

(5)

Each parameter is assigned to exactly one segment. Let
𝑑𝑖=

��S𝑖

��, 𝑖=1, . . . , 𝑆 . We define

𝑠𝑖 =
{
𝑗∈{1, . . . , 𝑛}

�� | |𝑤𝑡
𝑗 | |≥𝜏𝑖 ∧ (𝑖=𝑆 ∨ ||𝑤𝑡

𝑗 | |<𝜏𝑖+1)
}
, (6)

FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China Asadi et al.

Model

Represents a parameter

Each parameter is compared
with threshold values and

placed in a segment

. . .
Segment 1

. . .

Segment 2

. . .

Segment 3

Probabilistic
Segment
Selection

. . .

Segment 3

Share the segment
with a receiver device

Model

Figure 2: Segment creation and exchange in Gist.

M = Number
of parameters
in the model

Sender
Accuracy Bitmap Array of Parameter Values

Byte Bytes Bytes

Figure 3: Contents of a model update message.

Hence 𝑑𝑖 is the number of parameters that meet the 𝑖-th
threshold and are not counted in any other segment. Pa-
rameters with magnitudes below the smallest threshold are
not transmitted. This deliberate omission speeds up conver-
gence and stabilizes training, which is particularly beneficial
in DFL with non-𝑖 .𝑖 .𝑑 . data, where unstable convergence is
often seen. For the transmission we define the bitmap en-
tries as 𝑏𝑖 𝑗 = 1{ 𝜏𝑖≤∥𝑤𝑡

𝑗
∥<𝜏𝑖+1 },∀𝑗∈{1, . . . , 𝑛}. An entry 𝑏𝑖 𝑗=1

indicates that the magnitude of the 𝑗-th model parameter
lies within the interval [𝜏𝑖 , 𝜏𝑖+1) and therefore belongs to
segment 𝑖 , or otherwise 𝑏𝑖 𝑗=0.
Probabilistic Communication. The probability of sharing
a segment is proportional to its importance, calculated via
the softmax over the average parameter values within each
segment (Eq. 7). 𝑠𝑖 is the average of parameters in segment 𝑖 .

𝑃 (𝑖) = exp(𝑠𝑖)∑
𝑗 exp(𝑠 𝑗)

(7)

Success-BasedAggregation.The aggregation process, there-
fore, modifies the formulation from Section 3.1. Let𝑎𝑖 ∈ [0, 1]
be the accuracy associated with segment 𝑖 from a peer, and
let 𝑎local denote the accuracy of the local model. The received
tensor and division tensor are computed as:

𝑟 𝑗 =

𝑁∑︁
𝑖=1

𝑑∑︁
𝑘=1

𝑎𝑖 · 𝛿 (𝑗 = 𝜋𝑖 (𝑘)) · 𝑠𝑖𝑘 , ∀𝑗 ∈ {1, . . . , 𝑛} (8)

𝜙 𝑗 =

𝑁∑︁
𝑖=1

𝑎𝑖 · 𝑏𝑖 𝑗 , ∀𝑗 ∈ {1, . . . , 𝑛} (9)

The received tensor is then computed by including the local
model, weighted by its accuracy:

𝑤𝑡+1
𝑗 =

𝑟 𝑗 + 𝑎𝑙𝑜𝑐𝑎𝑙 ·𝑤𝑡
𝑗

𝜙 𝑗 + 𝑎𝑙𝑜𝑐𝑎𝑙
, ∀𝑗 ∈ {1, . . . , 𝑛} (10)

Finally, the local model is updated for the next round𝑤𝑡+1.
This accuracy-weighting scheme allows updates from more
reliable peers to have a greater influence on the local model.
The key steps of ourmethod are outlined in Algorithm 1, com-
prising three main stages: importance-based segmentation,
probabilistic communication, and success-based aggregation.

Algorithm 1 Gist - Importance-based Segmentation, Prob-
abilistic Communication and Success-Based Aggregation

Input: |𝑠𝑟𝑒𝑐 |: Total received segments,𝑤𝑖 : Initial parameters of
device 𝑖 ,𝐷𝑖 : Local dataset of device 𝑖 ,𝐷test: Local test dataset, 𝑘 :
Number of devices to share with per round, 𝜏𝑟 : Model receive
threshold for aggregation, 𝑆 : Number of segments, 𝑇 : Total
communication rounds, 𝐸: Number of epochs, 𝜂: Learning rate

1: for 𝑡 to 𝑇 do ⊲ Runs in parallel on each device
2: 𝐷𝑡

𝑖
= (split 𝐷𝑖 into batches of size 𝑍)

3: for𝑚 to 𝐸 do

4: for 𝛿 ∈ 𝐷𝑡
𝑖
do

5: 𝑤𝑡
𝑖
= 𝑤𝑡 − 𝜂∇𝑓 (𝑤𝑡 , 𝛿)

6: end for

7: end for

8: for 𝑖 to 𝑆 do ⊲ Segment Creation

9: 𝑞𝑖 =
100·𝑖
𝑆

10: 𝜏𝑖 = Percentile(|𝑤𝑡 |, 𝑞𝑖)
11: for 𝑗 to 𝑛 do

12: 𝑠𝑖 = Equation 6
13: 𝑏𝑖 𝑗 = 1{ 𝜏𝑖≤∥𝑤𝑡

𝑗
∥<𝜏𝑖+1 }

14: end for

15: end for

16: 𝑎𝑙𝑜𝑐𝑎𝑙 = Accuracy(𝑤𝑡
𝑖
, 𝐷test)

17: for 𝑖 to 𝑘 do ⊲ Communication

18: 𝑃 (𝑖) = exp(𝑠𝑖)∑
𝑗 exp(𝑠 𝑗)

19: 𝑛 = SelectRandomDevice()
20: Share(𝑎𝑙𝑜𝑐𝑎𝑙 , 𝑏, 𝑃 (𝑖), 𝑛)
21: end for

22: if |𝑠𝑟𝑒𝑐 | > 𝜏𝑟 then ⊲ Aggregation

23: for 𝑗 to 𝑛 do

24: 𝑟 𝑗 =
∑𝑁
𝑖=1

∑𝑑
𝑘=1 𝑎𝑖 · 𝛿 (𝑗 = 𝜋𝑖 (𝑘)) · 𝑠𝑖𝑘

25: 𝜙 𝑗 =
∑𝑁
𝑖=1 𝑎𝑖 · 𝑏𝑖 𝑗

26: 𝑤𝑡+1
𝑗

=
𝑟 𝑗+𝑎𝑙𝑜𝑐𝑎𝑙 ·𝑤𝑡

𝑗

𝜙 𝑗+𝑎𝑙𝑜𝑐𝑎𝑙
27: end for

28: end if

29: end for

4 Implementation

Gist operates across multiple deployment environments,
from simulation to real microcontrollers, while maintain-
ing the same foundational algorithms [1]. Each device acts
as an autonomous entity. Upon startup, a device generates
the parameters of the local neural network model. In our
simulation environment, devices are always synchronized

Gist - Optimizing Segmentation for DFL on Tiny Devices FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China

0 50 100 150
Round

20

40

60

80

M
od

el
 A

cc
ur

ac
y

(%
)

Centralized
SP
Gist+AdaStair
Gist

SDFA
DFA
AdaStair

(a) FCN on MNIST

0 20 40 60 80 100
Round

10

20

30

40

50

60

M
od

el
 A

cc
ur

ac
y

(%
)

(b) MobileNet on CIFAR-10

0 50 100 150 200
Round

20

40

60

80

100

M
od

el
 A

cc
ur

ac
y

(%
)

(c) LeNet5 on MNIST

Figure 4: Accuracy comparison over different models and datasets.

0 25
Round

20

30

40

50

M
od

el
 A

cc
ur

ac
y

(%
)

40 60 80 100
Round

55

60

65

70

Success
Vanilla

Figure 5: Success-based

vs. Vanilla aggregation.

in their communication rounds. On the contrary, real and
emulated devices operate independently, leading them to be
at different training and communication rounds at times. For
emulation and real microcontrollers, we implemented the op-
erations and algorithms at a low level using C. We build our
implementation on top of AIfES [32]. This includes imple-
mentation of the proposed segmentation, aggregation, data
manipulation, communication, flattening of tensor objects
and careful handling of memory; required to meet hardware
limitations. We implemented the simulation environment in
Python and integrated PyTorch libraries [6, 19, 23]. For simu-
lation, we utilize high-level functions that simplify accessing,
flattening, and loading weights back into the model. In our C
implementation, computational operations are executed us-
ing allocated tensors, where the parameters included in the
bitmaps are updated. Data types safety and race-condition
prevention are ensured through thread locks, and aggrega-
tion is done incrementally tominimizememory consumption.
This means the received segments are summed in a receiver
array before the aggregation happens.
⊲Communication.At the beginning of each run, the device
starts a service delegated to a single thread to listen for all
incoming messages after registering to the network interface.
Service Discovery. While initializing, the nodes broadcast
their service to the neighboring nodes as part of the service
discovery. We implement this in a blocking fashion, mean-
ing that all nodes should pass this phase upon startup and
before starting training and aggregating results. Each device
sends a message after binding to the target Transmission
Control Protocol (TCP) socket, and receiver devices send
back a message with their device ID. Microcontrollers then
save available nodes in the network for later communication
between each other via direct TCP connections.
Messaging Scheme. A device trains its model locally and
then segments the resulting parameters before each com-
munication round into multiple parts with the selected seg-
mentation method. All of the methods share these selected
segments with a random subset of discovered devices. As
Fig. 3 depicts, a message packet transmitted between devices
consists of two main components: a header and the payload
comprising model parameters. The header includes the de-
vice accuracy from the sender device over the commonly
shared test dataset and a bitmap array marking the locations

of the shared parameters inside the segment. The payload
contains flattened parameter values of the model, that are
serialized strings of floating point values. Upon receiving the
message packet, the device first parses the header to keep
the accuracy rate of the sender device and the bitmap. The
payload is then divided into individual float values, which
are integrated together with other received segments accord-
ing to their positions using the bitmap information. This
approach allows each device to accurately integrate parame-
ter updates and offer a structured and efficient way to merge
them with the device’s local model for the aggregation phase.

5 Evaluation

We evaluate Gist on different environments and under differ-
ent conditions, and compare it with state-of-the-art methods.
⊲ Baselines.We select several methods for evaluation. We
implement them focusing on contributions to training, seg-
mentation, and aggregation. The baselines include:
1○ Centralized Method: Aggregates all model parameters
from all devices, averages them, and obtains a global model.
We then load this global model back to each device. This
setup imitates traditional FL methods with a central server
and ensures efficient aggregation of all learned information.
2○ Decentralized Federated Averaging (DFA) [26] and
3○ Segmented DFA (SDFA): DFA uses a basic decentral-
ized setup without segmentation or adaptive mechanisms. It
performs full model updates. We also implement Segmented
DFA using uniformly distributed randomized segmentation
as a custom version of DFA for better comparison.
4○ Segmented Pulling (SP) [9]: Requests segments from
other devices after segmentation. It uses a system for de-
vices to pull specific segments of model parameters from
their neighbors and create model replicas from received seg-
ments. We additionally implement and include AdaStair [31],
a method that dynamically adjusts the local learning rate of
a device based on the round that the device is in, and sends
segments randomly. AdaStair complements our approach.
⊲ Models. Gist and our implementation are model-agnostic
and support various models. We select models that can be
easily trained and run onmicrocontrollers, and are supported
by the Machine Learning (ML) framework AIfES [32], includ-
ing a model with Fully-Connected Network (FCN) layers and
more complex LeNet5 [15] and MobileNet [8] models.

FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China Asadi et al.

0 50 100 150 200
Round

20

40

60

80

M
od

el
 A

cc
ur

ac
y

(%
)

SDFA
Adastair
Gist
Gist+Adastair

Figure 6: Accuracy on

real tiny devices.

0 50 100 150 200
Round

20

40

60

80

M
od

el
 A

cc
ur

ac
y

(%
)

Gist+AdaStair
Gist
AdaStair
SDFA
DFA

Figure 7: Emulation re-

sults over 200 devices.

0 20 40 60 80 100
Round

20

30

40

50

60

70

M
od

el
 A

cc
ur

ac
y

(%
)

SDFA
AdaStair
Gist+AdaStair
Gist

(a) Two Segments

0 20 40 60 80 100
Round

10

20

30

40

50

60

70

M
od

el
 A

cc
ur

ac
y

(%
)

SDFA
AdaStair
Gist+AdaStair
Gist

(b) Six Segments

Figure 8: Impact of different number of segments.

⊲Dataset.Weusemultiple datasets deployable on tinymicro-
controller devices, including MNIST [7] and CIFAR-10 [14],
while adjusting the model inputs. We evaluate different data
distribution scenarios for each dataset, including 𝑖 .𝑖 .𝑑 ., uni-
form non-𝑖 .𝑖 .𝑑 ., and Dirichlet-driven distributions. We con-
figure each device with 600 images available locally, and use
150 images from this dataset for training in each experiment.
⊲ Infrastructure. We perform evaluation on three different
experimental environments [1]:
1○ Simulation:Amodular and expandable framework around
a control loop for faster testing without physical hardware
limitations. The goal is to imitate the real-life environment
of a DFL system yet faster in testing and development.
2○ Emulation: A network of ESP32-S3 emulated devices
was setup that we developed based on QEMU [4, 24] to test
the practical feasibility of utilizing DFL on IoT hardware
with the compiled firmware and realistic system constraints.
3○ Real Hardware:We use up to ten ESP32-S3-DevKitC-1
boards for real-world validation.
⊲ Metric. Test accuracy of the local models after each com-
munication round is the primary evaluation metric used in
the framework. For better comparison, we run each configu-
ration with different seeds and compare their average.

5.1 Results

Accuracy on different models and datasets. We evaluate
Gist in two different settings: with and without the addi-
tion of the Adastair method which is complementary to our
proposal. Figure 4 shows accuracy through time over the
course of maximum 200 asynchronous update rounds for a
fully-connected model on MNIST, MobileNet on CIFAR-10,
and LeNet5 on MNIST. Across the board, Gist achieves 4-5%
higher accuracy over time and after convergence against the
best method. When combined with Adastair, the gap grows
larger to up to 20% on different infrastructures and tasks.
Accuracy on the network of real tiny devices. Figure 6
depicts convergence over time on a network of 10 microcon-
trollers. The results show similar trends comparative to the
simulation experiments, where our segmentation proposal
achieves the best accuracy on average and after convergence.
Performance at scale. To investigate the performance of
different methods at scale while facing real-world constraints

and condition, we performed DFL on our emulation setup
with 200 interconnected devices. Figure 7 shows a clear cut
between Gist and the rest when the number of participating
devices increase by an order of magnitude, further highlight-
ing its value in real-world scenarios where the number of
devices may grow to a few hundreds to thousands.
Impact of our success-based aggregation. To understand
the impact of our success-based aggregation mechanism, we
evaluate the convergence trend with and without it. As in
Fig. 5, it always outperforms the vanilla aggregation. The
difference becomes more evident after the initial 25 rounds.
Fewer segments or more?We evaluate the methods that
utilize segmentation strategies for two different segmenta-
tion counts, two and six segments (Fig. 8). While Segmented
DecFedAvg and AdaStair perform better when devices send
a larger portion of their model parameters, 50% in this case,
Gist’s performance improves with higher number of seg-
ments, demonstrating the efficiency of our importance-based
segmentation algorithm.

6 Conclusion

This paper introduced Gist, a DFL method for resource-
constrained tiny IoT devices. By synergistically combining
our importance-based parameter segmentation, probabilistic
sharing, and a success-based aggregation mechanism, Gist
efficiently prioritizes the exchange of impactful model up-
dates. This design ensures that information is propagated ef-
fectively to accelerate convergence, while maintainingmodel
diversity by periodically sharing less important parameters.
Our evaluation, spanning simulations of different models
on different tasks, large-scale realistic emulation, and de-
ployment on a physical cluster of ESP32-S3 microcontrollers,
validates the effectiveness of our approach. Across various
models and datasets, Gist consistently outperforms estab-
lished baselines, achieving higher accuracy and faster con-
vergence, particularly in scaled-up scenarios. The results
confirm that our method is not only scalable but that its
core components—notably the success-based aggregation
and fine-grained, importance-aware segmentation—are key
features. By enabling more efficient and robust collaborative
learning on tiny devices, Gist represents a step toward the
practical realization of decentralized tiny ML.

Gist - Optimizing Segmentation for DFL on Tiny Devices FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China

References

[1] Navidreza Asadi, Halil Ibrahim Bengü, Lars Wulfert, Hendrik Wöhrle,
and Wolfgang Kellerer. 2025. Poster: Road to Tiny Reality: Digital
Twins for Decentralized AI on Microcontrollers. In Proceedings of
the 31st Annual International Conference on Mobile Computing and
Networking (MOBICOM ’25). ACM. doi:10.1145/3680207.3765668

[2] Navidreza Asadi and Maziar Goudarzi. 2023. Variant parallelism: light-
weight deep convolutional models for distributed inference on IoT
devices. IEEE Internet of Things Journal 11, 1 (2023), 345–352.

[3] Tuncer Can Aysal, Mark J. Coates, and Michael G. Rabbat. 2008. Dis-
tributed Average Consensus With Dithered Quantization. IEEE Trans-
actions on Signal Processing 56, 10 (2008), 4905–4918. doi:10.1109/TSP.
2008.927071

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In
USENIX annual technical conference, FREENIX Track, Vol. 41. California,
USA, 10–55.

[5] Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro
Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet,
Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Cel-
drán. 2023. Decentralized federated learning: Fundamentals, state of
the art, frameworks, trends, and challenges. IEEE Communications
Surveys & Tutorials 25, 4 (2023), 2983–3013.

[6] Soumith Chintala, Gregory Chanan, Dmytro Dzhulgakov, Edward
Yang, Nikita Shulga, and The PyTorch Team. 2025. PyTorch: Tensors
and Dynamic neural networks in Python with strong GPU acceleration.
https://github.com/pytorch/pytorch. GitHub repository, version as of
July 23, 2025.

[7] Li Deng. 2012. The MNIST Database of Handwritten Digit Images for
Machine Learning Research [Best of the Web]. IEEE Signal Processing
Magazine 29, 6 (2012), 141–142. doi:10.1109/MSP.2012.2211477

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv:1704.04861 [cs.CV] https://arxiv.org/abs/
1704.04861

[9] Chenghao Hu, Jingyan Jiang, and Zhi Wang. 2019. De-
centralized Federated Learning: A Segmented Gossip Approach.
arXiv:1908.07782 [cs.LG] https://arxiv.org/abs/1908.07782

[10] Hossein Katebi, Navidreza Asadi, and Maziar Goudarzi. 2024. FullPack:
Full Vector Utilization for Sub-Byte Quantized Matrix-Vector Multipli-
cation on General Purpose CPUs. IEEE Computer Architecture Letters
23, 2 (2024), 142–145.

[11] Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. 2019. De-
centralized Stochastic Optimization and Gossip Algorithms with Com-
pressed Communication. arXiv:1902.00340 [cs.LG] https://arxiv.org/
abs/1902.00340

[12] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016).

[13] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2017. Federated
Learning: Strategies for Improving Communication Efficiency.
arXiv:1610.05492 [cs.LG] https://arxiv.org/abs/1610.05492

[14] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny
Images. (2009), 32–33. https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based
learning applied to document recognition. Proc. IEEE 86, 11 (1998),
2278–2324. doi:10.1109/5.726791

[16] Sunwoo Lee, Tuo Zhang, Chaoyang He, and Salman Avestimehr. 2022.
Layer-wise Adaptive Model Aggregation for Scalable Federated Learn-
ing. arXiv:2110.10302 [cs.LG] https://arxiv.org/abs/2110.10302

[17] Jian Li, Tongbao Chen, and Shaohua Teng. 2024. A comprehensive
survey on client selection strategies in federated learning. Computer
Networks 251 (2024), 110663. doi:10.1016/j.comnet.2024.110663

[18] Jun Liu, Jianchun Liu, Hongli Xu, Yunming Liao, Zhiyuan Wang, and
Qianpiao Ma. 2024. YOGA: Adaptive Layer-Wise Model Aggregation
for Decentralized Federated Learning. IEEE/ACM Transactions on
Networking 32, 2 (2024), 1768–1780. doi:10.1109/TNET.2023.3329005

[19] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the machine-
vision package of torch. In Proceedings of the 18th ACM international
conference on Multimedia. 1485–1488.

[20] Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro
Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet,
Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Cel-
drán. 2023. Decentralized Federated Learning: Fundamentals, State of
the Art, Frameworks, Trends, and Challenges. IEEE Communications
Surveys and Tutorials 25, 4 (2023), 2983–3013. doi:10.1109/comst.2023.
3315746

[21] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. 2023. Communication-Efficient Learning
of Deep Networks from Decentralized Data. arXiv:1602.05629 [cs.LG]
https://arxiv.org/abs/1602.05629

[22] Hesham Mostafa and Xin Wang. 2019. Parameter Efficient Training of
Deep Convolutional Neural Networks by Dynamic Sparse Reparame-
terization. arXiv:1902.05967 [cs.LG] https://arxiv.org/abs/1902.05967

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-
tion processing systems 32 (2019).

[24] QEMU Project. 2025. QEMU: A Generic and Open Source Machine
Emulator and Virtualizer. https://www.qemu.org/. Version 10.0.2,
accessed July 23, 2025.

[25] Minh K Quan, Pubudu N Pathirana, Mayuri Wijayasundara, Sujeeva
Setunge, Dinh C Nguyen, Christopher G Brinton, David J Love, and
H Vincent Poor. 2025. Federated learning for cyber physical systems:
a comprehensive survey. IEEE Communications Surveys & Tutorials
(2025).

[26] Tao Sun, Dongsheng Li, and Bao Wang. 2023. Decentralized Feder-
ated Averaging. IEEE Transactions on Pattern Analysis and Machine
Intelligence 45, 4 (2023), 4289–4301. doi:10.1109/TPAMI.2022.3196503

[27] Zhenheng Tang, Shaohuai Shi, Bo Li, and Xiaowen Chu. 2023. Gos-
sipFL: A Decentralized Federated Learning FrameworkWith Sparsified
and Adaptive Communication. IEEE Transactions on Parallel and Dis-
tributed Systems 34, 3 (2023), 909–922. doi:10.1109/TPDS.2022.3230938

[28] Xinghan Wang, Anusha Lalitha, Tara Javidi, and Farinaz Koushanfar.
2022. Peer-to-Peer Variational Federated Learning Over Arbitrary
Graphs. IEEE Journal on Selected Areas in Information Theory 3, 2
(2022), 172–182. doi:10.1109/JSAIT.2022.3189051

[29] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernan-
dez, and Peter Pietzuch. 2016. Ako: Decentralised Deep Learning
with Partial Gradient Exchange. In Proceedings of the Seventh ACM
Symposium on Cloud Computing (Santa Clara, CA, USA) (SoCC ’16).
Association for Computing Machinery, New York, NY, USA, 84–97.
doi:10.1145/2987550.2987586

[30] Feijie Wu, Xingchen Wang, Yaqing Wang, Tianci Liu, Lu Su, and Jing
Gao. 2024. FIARSE: Model-Heterogeneous Federated Learning via
Importance-Aware Submodel Extraction. arXiv:2407.19389 [cs.DC]
https://arxiv.org/abs/2407.19389

https://doi.org/10.1145/3680207.3765668
https://doi.org/10.1109/TSP.2008.927071
https://doi.org/10.1109/TSP.2008.927071
https://github.com/pytorch/pytorch
https://doi.org/10.1109/MSP.2012.2211477
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1908.07782
https://arxiv.org/abs/1908.07782
https://arxiv.org/abs/1902.00340
https://arxiv.org/abs/1902.00340
https://arxiv.org/abs/1902.00340
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/2110.10302
https://arxiv.org/abs/2110.10302
https://doi.org/10.1016/j.comnet.2024.110663
https://doi.org/10.1109/TNET.2023.3329005
https://doi.org/10.1109/comst.2023.3315746
https://doi.org/10.1109/comst.2023.3315746
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1902.05967
https://arxiv.org/abs/1902.05967
https://www.qemu.org/
https://doi.org/10.1109/TPAMI.2022.3196503
https://doi.org/10.1109/TPDS.2022.3230938
https://doi.org/10.1109/JSAIT.2022.3189051
https://doi.org/10.1145/2987550.2987586
https://arxiv.org/abs/2407.19389
https://arxiv.org/abs/2407.19389

FLEdge-AI ’25, November 4–8, 2025, Hong Kong, China Asadi et al.

[31] Lars Wulfert, Navidreza Asadi, Wen-Yu Chung, Christian Wiede, and
Anton Grabmaier. 2023. Adaptive Decentralized Federated Gossip
Learning for Resource-Constrained IoT Devices. In Proceedings of the
4th International Workshop on Distributed Machine Learning (Paris,
France) (DistributedML ’23). Association for Computing Machinery,
New York, NY, USA, 27–33. doi:10.1145/3630048.3630181

[32] Lars Wulfert, Johannes Kühnel, Lukas Krupp, Justus Viga, Christian
Wiede, Pierre Gembaczka, and Anton Grabmaier. 2024. AIfES: A Next-
Generation Edge AI Framework. IEEE Transactions on Pattern Analysis

and Machine Intelligence 46, 6 (2024), 4519–4533. doi:10.1109/TPAMI.
2024.3355495

[33] Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. 2023.
Heterogeneous federated learning: State-of-the-art and research chal-
lenges. Comput. Surveys 56, 3 (2023), 1–44.

[34] Liangqi Yuan, ZiranWang, Lichao Sun, Philip S. Yu, and Christopher G.
Brinton. 2024. Decentralized Federated Learning: A Survey and Per-
spective. arXiv:2306.01603 [cs.LG] https://arxiv.org/abs/2306.01603

https://doi.org/10.1145/3630048.3630181
https://doi.org/10.1109/TPAMI.2024.3355495
https://doi.org/10.1109/TPAMI.2024.3355495
https://arxiv.org/abs/2306.01603
https://arxiv.org/abs/2306.01603

	Abstract
	1 Introduction
	2 Related Work
	3 Gist Design
	3.1 Segmentation & Aggregation: A Primer
	3.2 Our Method

	4 Implementation
	5 Evaluation
	5.1 Results

	6 Conclusion
	References

